skip to main content


Search for: All records

Creators/Authors contains: "Oleksy, Isabella A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lake trophic state is a key ecosystem property that integrates a lake’s physical, chemical, and biological processes. Despite the importance of trophic state as a gauge of lake water quality, standardized and machine-readable observations are uncommon. Remote sensing presents an opportunity to detect and analyze lake trophic state with reproducible, robust methods across time and space. We used Landsat surface reflectance data to create the first compendium of annual lake trophic state for 55,662 lakes of at least 10 ha in area throughout the contiguous United States from 1984 through 2020. The dataset was constructed with FAIR data principles (Findable, Accessible, Interoperable, and Reproducible) in mind, where data are publicly available, relational keys from parent datasets are retained, and all data wrangling and modeling routines are scripted for future reuse. Together, this resource offers critical data to address basic and applied research questions about lake water quality at a suite of spatial and temporal scales.

     
    more » « less
  2. Abstract Global change may contribute to ecological changes in high-elevation lakes and reservoirs, but a lack of data makes it difficult to evaluate spatiotemporal patterns. Remote sensing imagery can provide more complete records to evaluate whether consistent changes across a broad geographic region are occurring. We used Landsat surface reflectance data to evaluate spatial patterns of contemporary lake color (2010–2020) in 940 lakes in the U.S. Rocky Mountains, a historically understudied area for lake water quality. Intuitively, we found that most of the lakes in the region are blue (66%) and were found in steep-sided watersheds (>22.5°) or alternatively were relatively deep (>4.5 m) with mean annual air temperature (MAAT) <4.5°C. Most green/brown lakes were found in relatively shallow sloped watersheds with MAAT ⩾4.5°C. We extended the analysis of contemporary lake color to evaluate changes in color from 1984 to 2020 for a subset of lakes with the most complete time series ( n = 527). We found limited evidence of lakes shifting from blue to green states, but rather, 55% of the lakes had no trend in lake color. Surprisingly, where lake color was changing, 32% of lakes were trending toward bluer wavelengths, and only 13% shifted toward greener wavelengths. Lakes and reservoirs with the most substantial shifts toward blue wavelengths tended to be in urbanized, human population centers at relatively lower elevations. In contrast, lakes that shifted to greener wavelengths did not relate clearly to any lake or landscape features that we evaluated, though declining winter precipitation and warming summer and fall temperatures may play a role in some systems. Collectively, these results suggest that the interactions between local landscape factors and broader climatic changes can result in heterogeneous, context-dependent changes in lake color. 
    more » « less
  3. Abstract

    Global change is influencing production and respiration in ecosystems across the globe. Lakes in particular are changing in response to climatic variability and cultural eutrophication, resulting in changes in ecosystem metabolism. Although the primary drivers of production and respiration such as the availability of nutrients, light, and carbon are well known, heterogeneity in hydrologic setting (for example, hydrological connectivity, morphometry, and residence) across and within regions may lead to highly variable responses to the same drivers of change, complicating our efforts to predict these responses. We explored how differences in hydrologic setting among lakes influenced spatial and inter annual variability in ecosystem metabolism, using high-frequency oxygen sensor data from 11 lakes over 8 years. Trends in mean metabolic rates of lakes generally followed gradients of nutrient and carbon concentrations, which were lowest in seepage lakes, followed by drainage lakes, and higher in bog lakes. We found that while ecosystem respiration (ER) was consistently higher in wet years in all hydrologic settings, gross primary production (GPP) only increased in tandem in drainage lakes. However, interannual rates of ER and GPP were relatively stable in drainage lakes, in contrast to seepage and bog lakes which had coefficients of variation in metabolism between 22–32%. We explored how the geospatial context of lakes, including hydrologic residence time, watershed area to lake area, and landscape position influenced the sensitivity of individual lake responses to climatic variation. We propose a conceptual framework to help steer future investigations of how hydrologic setting mediates the response of metabolism to climatic variability.

     
    more » « less
  4. null (Ed.)
    Abstract Nearshore (littoral) habitats of clear lakes with high water quality are increasingly experiencing unexplained proliferations of filamentous algae that grow on submerged surfaces. These filamentous algal blooms (FABs) are sometimes associated with nutrient pollution in groundwater, but complex changes in climate, nutrient transport, lake hydrodynamics, and food web structure may also facilitate this emerging threat to clear lakes. A coordinated effort among members of the public, managers, and scientists is needed to document the occurrence of FABs, to standardize methods for measuring their severity, to adapt existing data collection networks to include nearshore habitats, and to mitigate and reverse this profound structural change in lake ecosystems. Current models of lake eutrophication do not explain this littoral greening. However, a cohesive response to it is essential for protecting some of the world's most valued lakes and the flora, fauna, and ecosystem services they sustain. 
    more » « less